Phil 6.27.18

7:00 – 12:00 ASRC MKT

  • Print out documents! Done. Got passport drive too.
  • Need to write an extractor that lets the user navigate the xml file containing influences of selected agents. This could be a sample-by sample network. Maybe two modes?
    • Select an agent and see all the other agents come in and out of influcene
    • Select an number of agents and only watch the mutual influence.
    • There is an integrated JavaFX charts that I could use, or it could be an uploaded webapp? JavaFX would be easier in the short term, but a webapp would help more with JuryRoom…
    • Another option would be Python, since that’s where the LSTM code will live.
    • On the whole, two days before leaving on travel is probably the wrong time to start coding
  • Fixed a bug in the xml file generation
  • copied the new jar file onto the thumb drive
  • copied the xml file onto the thumb drive

12:00 – 4:00 ASRC A2P

  • Pomoting things to QA – done! Or at least, up to date with the excel files

Phil 6.26.18

7:00 – 5:00 ASRC MKT

  • Started back with the Evolution of Cooperation
  • Social loafing (Scholar results)
    • In social psychologysocial loafing is the phenomenon of a person exerting less effort to achieve a goal when they work in a group than when they work alone. This is seen as one of the main reasons groups are sometimes less productive than the combined performance of their members working as individuals, but should be distinguished from the accidental coordination problems that groups sometimes experience. Research on social loafing began with rope pulling experiments by Ringelmann, who found that members of a group tended to exert less effort in pulling a rope than did individuals alone. In more recent research, studies involving modern technology, such as online and distributed groups, have also shown clear evidence of social loafing. Many of the causes of social loafing stem from an individual feeling that his or her effort will not matter to the group.
  • NELA2017 contains almost every news article from 92 sources between April 2017 and October 2017, amounting to over 136K articles. This data set is the first release of NELA datasets. This version of the data set can be found on github and a full description and use cases can be found in our 2018 ICWSM paper.
  • Submitted “One Simple Trick” final to SASO
  • Updated ArXive
  • Fixed a bug that prevented population interactions in FlockingAgentManager.initializeAgents():
                // add to the global list
                allBoidsList.add(fs);
    
                // add a pointer to the global list to each shape
                fs.setFlockingShapeList(allBoidsList);
    
                // Add to the flock so that we can get flock headings
                List flock = flockListsMap.get(flockName);
                flock.add(fs);

    Seriously, what was I thinking?

  • Continued GUI tweaking. I think it looks pretty good, and it fits (mostly) on my laptop Version6.26.18
  • Verified that the influences record agents from different flocks and sources.
  • Copied all CI 2018 things I can think of onto the thumb drive

Phil 6.25.18

7:00 – 9:00 ASRC MKT

  • Update laptop – Intellij, Java, GroupPolarazation codebase
  • Add XML output for influence – done!
  • Refactored the GUI to work with smaller (laptop) screens)

9:00 – 2:30 ASRC A2P

  • Debug what’s going on with the excel reading. Try a new config file first?
  • Ground slowly through options
    • Replaced the config file
    • Stepped through the debugger, and noticed that the worksheet was null. Tried a different worksheet/config, and that was *not* null
    • Created a new workbook and copied everything over without formatting. That worked on the converter, but didn’t work with A2P
    • Reformatted the new workbook and wound up using the Funding Summary Details data with the formatting, which is *crazy*….
    • Had some issues getting connected to the server. Pageant forgot my key.

3:00 – 4:00 ASRC MKT

  • Fika. No, not really. Wound up chatting with Will

Phil 6.22.18

7:00 – 5:30 ASRC MKT

  • Twitter experiment on a fake Gary Indiana secession. IFTTT retweeting leads to interesting behavior.
  • Fixed FlockingShape casting by adding a customDrawStep(GraphicsContext gc) to the SmartShape base class that’s called from draw().
  • Add records to each agent that store a list of source and agent influences at each time sample. It should include the name of the item and the amount of influence. Probably save as an XML file, since it has too many dimensions. The file could then be used to create terms or spreadsheets.
    • Started on CAInfluence class which will be added to CA classes in an arrayList in BaseCA;
  • More file conversion with Bob – and everything worked great until I try one after Bob leaves. Ka-BOOM!
    • Installed all the packages to get everything to run in the debugger. Found what appears to be a perfectly good line “range” that causes the problem? Will start debugging on Wednesday.
  • Project MERCATOR proposal
  • Meeting with Sy

Phil 6.21.18

7:00 – 4:00 ASRC MKT

  • Add an attractor scalar for agents that’s normally zero. A vector to each agent within the SIH is calculated and scaled by the attractor scalar. That vector is then added to the direction vector to the agent – done
  • Remove the heading influence based on site – done
  • Add a white circle to the center of the agent that is the size of the attraction scalar. Done
  • Add attraction radius slider that is independent of the SIH. -done
  • Add a ‘site trajectory’ to the spreadsheet that will have the site lists (and their percentage?)
  • There is now an opportunity for a poster and a demo at SASO
  • Add stories, lists and maps to implication slides – done
  • Got all my connections set up
  • Successfully converted and deployed cosmos-2
  • Voted!

Phil 6.20.18

7:00 – 9:00 2:00 – 5:00 ASRC MKT

  • Redo doodle for all of August – done
  • Schooling Fish May Offer Insights Into Networked Neurons
    • Iain Couzin is deciphering the rules that govern group behavior. The results might provide a fresh perspective on how networks of neurons work together.
  • City arts and lectures: The New Science Of Psychedelics With Michael Pollan
    • Psychedelics reduce the section of the brain that have to do with the sense of self. Pollan thinks that this also happens with certain types of rhythmic music and in crowd situations. This could be related to stampedes and flocking.
    • LSD May Chip Away at the Brain’s “Sense of Self” Network
      • Brain imaging suggests LSD’s consciousness-altering traits may work by hindering some brain networks and boosting overall connectivity
  • Add an attractor scalar for agents that’s normally zero. A vector to each agent within the SIH is calculated and scaled by the attractor scalar. That vector is then added to the direction vector to the agent – done?
  • Remove the heading influence based on site – done
  • Add a white circle to the center of the agent that is the size of the attraction scalar. Done
  • Add a ‘site trajectory’ to the spreadsheet that will have the site lists (and their percentage?)
  • Worked on A2P white paper with Aaron.
  • Worked on a response to Dr. Li’s response

ASRC IRAD 9:00 – 2:00

  • Mind meld with Bob
    • Revisit Yarn
    • Excel stuff?
    • Connect to AWS using bastion. Look in FoxyProxy how to. I need certs
    • Drop on rabbit to deploy to CI and QA and NESDIS  ONE (production)
    • Don’t want sensitive information in Git. We use sharepoint instead
    • Notes and screenshots in document.

Phil 5.18.18

7:00 – 4:00 ASRC MKT

Phil 5.17.18

7:00 – 4:00 ASRC MKT

  • How artificial intelligence is changing science – This page contains pointers to a bunch of interesting projects:
  • Multi-view Discriminative Learning via Joint Non-negative Matrix Factorization
    • Multi-view learning attempts to generate a classifier with a better performance by exploiting relationship among multiple views. Existing approaches often focus on learning the consistency and/or complementarity among different views. However, not all consistent or complementary information is useful for learning, instead, only class-specific discriminative information is essential. In this paper, we propose a new robust multi-view learning algorithm, called DICS, by exploring the Discriminative and non-discriminative Information existing in Common and view-Specific parts among different views via joint non-negative matrix factorization. The basic idea is to learn a latent common subspace and view-specific subspaces, and more importantly, discriminative and non-discriminative information from all subspaces are further extracted to support a better classification. Empirical extensive experiments on seven real-world data sets have demonstrated the effectiveness of DICS, and show its superiority over many state-of-the-art algorithms.
  • Add Nomadic, Flocking, and Stampede to terms. And a bunch more
  • Slides
  • Embedding navigation
    • Extend SmartShape to SourceShape. It should be a stripped down version of FlockingShape
    • Extend BaseCA to SourceCA, again, it should be a stripped down version of FlockingBeliefCA
    • Add a sourceShapeList for FlockingAgentManager that then passes that to the FlockingShapes
  • And it’s working! Well, drawing. Next is the interactions: Influence
  • Finally went and joined the IEEE

Phil 5.16.18

7:00 – 3:30 ASRC MKT

  • My home box has become very slow. 41 seconds to do a full recompile of GPM, while it takes 3 sec on a nearly identical machine at work. This may help?
  • Working on terms
  • Working on slides
  • Attending talk on Big Data, Security and Privacy – 11 am to 12 pm at ITE 459
    • Bhavani Thiraisingham
    • Big data management and analytics emphasizing GANs  and deep learning<- the new hotness
      • How do you detect attacks?
      • UMBC has real time analytics in cyber? IOCRC
    • Example systems
      • Cloud centric assured information sharing
    • Research challenges:
      • dynamically adapting and evolving policies to maintain privacy under a changing environment
      • Deep learning to detect attacks tat were previously not detectable
      • GANs or attacker and defender?
      • Scaleabe is a big problem, e.g. policies within Hadoop operatinos
      • How much information is being lost by not sharing data?
      • Fine grained access control with Hive RDF?
      • Distributed Search over Encrypted Big Data
    • Data Security & Privacy
      • Honypatching – Kevin xxx on software deception
      • Novel Class detection – novel class embodied in novel malware. There are malware repositories?
    • Lifecycle for IoT
    • Trustworthy analytics
      • Intel SGX
      • Adversarial SVM
      • This resembles hyperparameter tuning. What is the gradient that’s being descended?
      • Binary retrofitting. Some kind of binary man-in-the-middle?
      • Two body problem cybersecurity
    • Question –
      • discuss how a system might recognize an individual from session to session while being unable to identify the individual
      • What about multiple combinatorial attacks
      • What about generating credible false information to attackers, that also has steganographic components for identifying the attacker?
  • I had managed to not commit the embedding xml and the programs that made them, so first I had to install gensim and lxml at home. After that it’s pretty straightforward to recompute with what I currently have.
  • Moving ARFF and XLSX output to the menu choices. – done
  • Get started on rendering
    • Got the data read in and rendering, but it’s very brute force:
      if(getCurrentEmbeddings().loadSuccess){
          double posScalar = ResizableCanvas.DEFAULT_SCALAR/2.0;
          List<WordEmbedding> weList = currentEmbeddings.getEmbeddings();
          for (WordEmbedding we : weList){
              double size = 10.0 * we.getCount();
              SmartShape ss = new SmartShape(we.getEntry(), Color.WHITE, Color.BLACK);
              ss.setPos(we.getCoordinate(0)*posScalar, we.getCoordinate(1)*posScalar);
              ss.setSize(size, size);
              ss.setAngle(0);
              ss.setType(SmartShape.SHAPE_TYPE.OVAL);
              canvas.addShape(ss);
          }
      }

      It took a while to remember how shapes and agents work together. Next steps:

      • Extend SmartShape to SourceShape. It should be a stripped down version of FlockingShape
      • Extend BaseCA to SourceCA, again, it should be a stripped down version of FlockingBeliefCA
      • Add a sourceShapeList for FlockingAgentManager that then passes that to the FlockingShapes

Phil 5.15.18

7:00 – 4:00 ASRC MKT

Phil 5.14.18

7:00 – 3:00 ASRC MKT

    • Working on Zurich Travel. Ricardo is getting tix, and I got a response back from the conference on an extended stay
    • Continue with slides
    • See if there is a binary embedding reader in Java? Nope. Maybe in ml4j, but it’s easier to just write out the file in the format that I want
    • Done with the writer: Vim
  • Fika
  • Finished Simulacra and Simulation. So very, very French. From my perspective, there are so many different lines of thought coming out of the work that I can’t nail down anything definitive.
  • Started The Evolution of Cooperation

Phil 2.26.18

7:00 – 6:00 ASRC MKT

  • Spread of information is dominated by search ranking f1-large
    • Twitter thread
      • The spreading process was linear because the background search rate is roughly constant day to day for discounts, and any viral element turned out to be quite small.
    • Paper
  •  BIC
    • There are many conceivable team mechanisms apart from simple direction and team reasoning; they differ in the way in which computation is distributed and the pattern of message sending. For example, one agent might compute o* and send instructions to the others. With the exception of team reasoning, these mechanisms involve the communication of information. If they do I shall call them modes of organization or protocols. (pg 125)
    • A mechanism is a general process. The idea (which I here leave only roughly stated) is of a causal process which determines (wholly or partly) what the agents do in any simple coordination context. It will be seen that all the examples I have mentioned are of this kind; contrast a mechanism that applies, say, only in two-person cases, or only to matching games, or only in business affairs. In particular, team reasoning is this kind of thing. It applies to any simple coordination context whatsoever. It is a mode of reasoning rather than an argument specific to a context. (pg 126)
  •  Presentation:
    • I need to put together a 2×2 payoff matrix that covers nomad/flock/stampede
    • Some more heat map views, showing nomad, flocking
    • De-uglify JuryRoom
    • Timeline of references
    • Collapse a few pages 22.5 minutes for presentation and questions
  • Work on getting SheetToMap in a swing app? Less figuring things out…
    • Slower going than I hoped, but mostly working now. As always, StackOverflow to the rescue: How to draw graph inside swing with GraphStream actually?
    • Adding load and save menu choices. Done! Had a few issues with getting the position of the nodes saved out. It seems like you should do this?
      GraphicNode gn = viewer.getGraphicGraph().getNode(name);
      row.createCell(cellIndex++).setCellValue(gn.getX());
      row.createCell(cellIndex++).setCellValue(gn.getY());
    • Anyway, pretty pix: 2018-02-26
  • Start on white paper
  • Fika

Phil 2.14.18

7:00 – 4:00 ASRC

  • Stampede? Herding? Twitter deleted 200,000 Russian troll tweets. Read them here.
    • Twitter doesn’t make it easy to track Russian propaganda efforts — this database can help
  • Add a “show all trajectories” checkbox.
    • That’s a nice visualization that shows the idea of the terrain uncovered by the trajectories: 2018-02-14
  • Continue with paper – down to 3 pages!
  • Continue with slides. Initial walkthrough with Aaron
  • 3:00 – 4:00 A2P meeting

Phil 2.13.18

7:00 – 4:00 ASRC MKT

  • UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
    • UMAP (Uniform Manifold Approximation and Projection) is a novel manifold learning technique for dimension reduction. UMAP is constructed from a theoretical framework based in Riemannian geometry and algebraic topology. The result is a practical scalable algorithm that applies to real world data. The UMAP algorithm is competitive with t-SNE for visualization quality, and arguably preserves more of the global structure with superior run time performance. Furthermore, UMAP as described has no computational restrictions on embedding dimension, making it viable as a general purpose dimension reduction technique for machine learning.
  • How Prevalent are Filter Bubbles and Echo Chambers on Social Media? Not as Much as Conventional Wisdom Has It
    • Yet, as Rasmus points out, conventional wisdom seems to be stuck with the idea that social media constitute filter bubbles and echo chambers, where most people only, or mostly, see political content they already agree with. It is definitely true that there is a lot of easily accessible, clearly identifiable, highly partisan content on social media. It is also true that, to some extent, social media users can make choices as to which sources they follow and engage with. Whether people use these choice affordances solely to flock to content reinforcing their political preferences and prejudices, filtering out or avoiding content that espouses other viewpoints, is, however, an empirical question—not a destiny inscribed in the way social media and their algorithms function.
  • He Predicted The 2016 Fake News Crisis. Now He’s Worried About An Information Apocalypse.
    • That future, according to Ovadya, will arrive with a slew of slick, easy-to-use, and eventually seamless technological tools for manipulating perception and falsifying reality, for which terms have already been coined — “reality apathy,” “automated laser phishing,” and “human puppets.”
  • Finish first pass at DC slides – done!
  • Begin trimming paper – good progress.
  • Add a slider that lets the user interactively move a token along the selected trajectory path – done. Yes, it looks like a golf ball on a tee… Capture
  • Sprint planning

Phil 2.12.18

7:00 – 4:00 ASRC MKT

  • The social structural foundations of adaptation and transformation in social–ecological systems
    • Social networks are frequently cited as vital for facilitating successful adaptation and transformation in linked social–ecological systems to overcome pressing resource management challenges. Yet confusion remains over the precise nature of adaptation vs. transformation and the specific social network structures that facilitate these processes. Here, we adopt a network perspective to theorize a continuum of structural capacities in social–ecological systems that set the stage for effective adaptation and transformation. We begin by drawing on the resilience literature and the multilayered action situation to link processes of change in social–ecological systems to decision making across multiple layers of rules underpinning societal organization. We then present a framework that hypothesizes seven specific social–ecological network configurations that lay the structural foundation necessary for facilitating adaptation and transformation, given the type and magnitude of human action required. A key contribution of the framework is explicit consideration of how social networks relate to ecological structures and the particular environmental problem at hand. Of the seven configurations identified, three are linked to capacities conducive to adaptation and three to transformation, and one is hypothesized to be important for facilitating both processes.
  • Starting to trim paper down to three pages
  • Starting on CHIIR slide stack – Still need to add future work
  • Springt Review
  • Rwanda radio transcripts
    • From October 1993 to late 1994, RTLM was used by Hutu leaders to advance an extremist Hutu message and anti-Tutsi disinformation, spreading fear of a Tutsi genocide against Hutu, identifying specific Tutsi targets or areas where they could be found, and encouraging the progress of the genocide. In April 1994, Radio Rwanda began to advance a similar message, speaking for the national authorities, issuing directives on how and where to kill Tutsis, and congratulating those who had already taken part.
  • Fika
    • Set up Fika Writing group that will meet Wednesdays at 4:00. We’ll see how that goes.